已知向量=(cosωx,1),=(2sin(ωx+),﹣1)(其中≤ω≤),函数f(x)=•,且f(x)图象的一条对称轴为x=.(1)求f(π)的值;(2)若f()=,f(﹣)=,且,求cos(α﹣β)的值.
已知函数 f (x)=sinωx+(ω>0,x∈R),且函数 f (x) 的最小正周期为π.(Ⅰ)求函数 f (x) 的解析式;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c.若f (B)=1,,且a+c=4,试求b2的值.
在平面直角坐标系中,椭圆的中心为坐标原点,左焦点为, 为椭圆的上顶点,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知直线:与椭圆交于,两点,直线:()与椭圆交于,两点,且,如图所示.(ⅰ)证明:;(ⅱ)求四边形的面积的最大值.
已知函数.(Ⅰ)求的单调区间;(Ⅱ)是否存在实数,使得函数的极大值等于?若存在,求出的值;若不存在,请说明理由.
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.(Ⅰ)求直方图中的值;(Ⅱ)如果上学所需时间不少于1小时的学生可申请在学校住宿,请估计学校600名新生中有多少名学生可以申请住宿;(Ⅲ)从学校的新生中任选4名学生,这4名学生中上学所需时间少于20分钟的人数记为,求的分布列和数学期望.(以直方图中新生上学所需时间少于20分钟的频率作为每名学生上学所需时间少于20分钟的概率)
在四棱锥中,//,,,平面,. (Ⅰ)设平面平面,求证://; (Ⅱ)求证:平面;(Ⅲ)设点为线段上一点,且直线与平面所成角的正弦值为,求的值.