(本小题满分13分)已知A、B为抛物线C:y2 = 4x上的两个动点,点A在第一象限,点B在第四象限l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.(Ⅰ)若直线AB过抛物线C的焦点F,求证:动点P在一条定直线上,并求此直线方程;(Ⅱ)设C、D为直线l1、l2与直线x = 4的交点,求面积的最小值.
圆过点,圆心在上,并与直线相切,求该圆的方程。
已知直线在轴上截距相等,且到点的距离等于,求直线的方程.
已知数列的首项,,. (1)求的通项公式; (2)证明:对任意的,,; (3)证明:.
如图,设抛物线方程为直线上任意一点,过M引抛物线的切线,切点分别为A,B。 (1)求证:A,M,B三点的横坐标成等差数列; (2)已知当M点的坐标为时,,求此时抛物线的方程; (3)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
已知函数。(1)求函数的单调区间和值域; (2)设,函数,若对于任意总存在,使得成立,求实数的取值范围。