观察下列等式: ①= = ; ②= =; ③= = ;… 回答下列问题: (1)化简:= ; (2)化简:= (n为正整数); (3)利用上面所揭示的规律计算: .
如图,在平面直角坐标系中,抛物线 y = 1 2 x 2 + bx + c 与坐标轴交于 A ( 0 , - 2 ) , B ( 4 , 0 ) 两点,直线 BC : y = - 2 x + 8 交 y 轴于点 C .点 D 为直线 AB 下方抛物线上一动点,过点 D 作 x 轴的垂线,垂足为 G , DG 分别交直线 BC , AB 于点 E , F .
(1)求抛物线 y = 1 2 x 2 + bx + c 的表达式;
(2)当 GF = 1 2 时,连接 BD ,求 ΔBDF 的面积;
(3)① H 是 y 轴上一点,当四边形 BEHF 是矩形时,求点 H 的坐标;
②在①的条件下,第一象限有一动点 P ,满足 PH = PC + 2 ,求 ΔPHB 周长的最小值.
问题解决:如图1,在矩形 ABCD 中,点 E , F 分别在 AB , BC 边上, DE = AF , DE ⊥ AF 于点 G .
(1)求证:四边形 ABCD 是正方形;
(2)延长 CB 到点 H ,使得 BH = AE ,判断 ΔAHF 的形状,并说明理由.
类比迁移:如图2,在菱形 ABCD 中,点 E , F 分别在 AB , BC 边上, DE 与 AF 相交于点 G , DE = AF , ∠ AED = 60 ° , AE = 6 , BF = 2 ,求 DE 的长.
如图, ΔABC 内接于 ⊙ O , D 是 ⊙ O 的直径 AB 的延长线上一点, ∠ DCB = ∠ OAC .过圆心 O 作 BC 的平行线交 DC 的延长线于点 E .
(1)求证: CD 是 ⊙ O 的切线;
(2)若 CD = 4 , CE = 6 ,求 ⊙ O 的半径及 tan ∠ OCB 的值.
如图1,小刚家、学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离 y ( m ) 与他所用的时间 x ( min ) 的函数关系如图2所示.
(1)小刚家与学校的距离为 m ,小刚骑自行车的速度为 m / min ;
(2)求小刚从图书馆返回家的过程中, y 与 x 的函数表达式;
(3)小刚出发35分钟时,他离家有多远?
为庆祝中国共产党建党100周年,某校开展了以"学习百年党史,汇聚团结伟力"为主题的知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分成 A , B , C , D , E 五个等级,并绘制了如下不完整的统计图.请结合统计图,解答下列问题:
等级
成绩 x
A
50 ⩽ x < 60
B
60 ⩽ x < 70
C
70 ⩽ x < 80
D
80 ⩽ x < 90
E
90 ⩽ x ⩽ 100
(1)本次调查一共随机抽取了 名学生的成绩,频数分布直方图中 m = ;
(2)补全学生成绩频数分布直方图;
(3)所抽取学生成绩的中位数落在 等级;
(4)若成绩在80分及以上为优秀,全校共有2000名学生,估计成绩优秀的学生有多少人?