(本小题满分12分)如图,在三棱柱中,平面,,,.(1)过的截面交于点,若为等边三角形,求出点的位置;(2)在(1)条件下,求平面与平面所成二面角的大小.
【原创】如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD ="2AE" ="2AB" =" 4CF=" 4,将四边形EFCD沿EF折起使AE=AD.(1)求证:AF∥平面CBD;(2)求几何体ADE-BCF的体积.
已知:矩形的两条对角线相交于点,边所在直线的方程为: ,点在边所在直线上.(1)求矩形外接圆的方程。(2)是圆的内接三角形,其重心的坐标是,求直线的方程 .
如图,四棱锥中,底面是以为中心的菱形,底面,,为上一点,且.(1)证明:平面;(2)若,求四棱锥的体积.
直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.
如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC,M为AB中点,D为PB中点, 且△PMB为正三角形。(Ⅰ)求证:DM∥平面APC; (Ⅱ)若BC=4,AB=20,求三棱锥D—BCM的体积。