(本小题满分12分)已知圆,直线(1)求证:对,直线与圆总有两个不同的交点A、B;(2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;(3)若定点P(1,1)满足,求直线的方程。
某大学对该校参加某项活动的志愿者实施“社会教育实施”学分考核,该大学考核只有合格和优秀两个等次.若某志愿者考核为合格,授予个学分;考核为优秀,授予个学分.假设该校志愿者甲、乙考核为优秀的概率分别为、,乙考核合格且丙考核优秀的概率为.甲、乙、丙三人考核所得等次相互独立. (1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率; (2)记在这次考核中,甲、乙、丙三名志愿者所得学分之和为随机变量,求随机变量的 分布列和数学期望.
在锐角中,角、、所对的边分别为、、. 且. (1)求角的大小及角的取值范围; (2)若,求的取值范围.
已知函数 (I)当a=0时,解不等式; (II)若存在x∈R,使得,f(x)≤g(x)成立,求实数a的取值范围.
在直角坐标系xoy中,圆C的参数方程为以O为极点,x轴的非负半轴为极轴,并取相同的长度单位建立极坐标系,直线l的极坐标方程 (I)求圆心的极坐标。 (II)若圆C上点到直线l的最大距离为3,求r的值。
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=,圆O的半径为3,求OA的长.