(本小题满分12分)已知等比数列满足:,且是的等差中项.(Ⅰ)求数列的通项公式;(Ⅱ)若数列{an}是单调递增的,令, ,求使成立的正整数的最小值.
解关于x的不等式:
已知椭圆C:的长轴长为,离心率.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为, 求直线的方程.
已知函数,其中为大于零的常数.(Ⅰ)若曲线在点(1,)处的切线与直线平行,求的值;(Ⅱ)求函数在区间[1,2]上的最小值.
某公园准备建一个摩天轮,摩天轮的外围是一个周长为米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连.经预算,摩天轮上的每个座位与支点相连的钢管的费用为元/根,且当两相邻的座位之间的圆弧长为米时,相邻两座位之间的钢管和其中一个座位的总费用为元,假设座位等距离分布,且至少有四个座位,所有座位都视为点,且不考虑其他因素,记摩天轮的总造价为元.(Ⅰ)试写出关于的函数关系式,并写出定义域;(Ⅱ)当米时,试确定座位的个数,使得总造价最低。
如图,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是. (Ⅰ)求二面角的大小; (Ⅱ)求点到平面的距离.