在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为的两条直线,交C1于A,B两点(点A,B异于点P),若,且直线AB与圆相切,求△PAB的面积.
已知函数y="f(x)=" (a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)< (1)试求函数f(x)的解析式;(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由。
设的定义域,对于任意正实数m,n恒有,且当时,.(1)求的值;(2)求证:在上是增函数;(3)解关于x的不等式,其中.
某种商品在30天内每件的销售价格P(元)与时间t(天) 的函数关系用如图所示的两条直线段表示:又该商品在30天内日销售量Q(件)与时间t(天)之间的关系如下表所示:
(1)根据题设条件,写出该商品每件的销售价格P与时间t的函数关系式;并确定日销售量Q与时间t的一个函数关系式;(2),试问30天中第几天日销售金额最大?最大金额为多少元? (日销售金额=每件的销售价格×日销售量).
已知(1)判断的奇偶性;(2)当时,画出的简图,并指出函数的单调区间.
已知方程,两根为.(1)求m的值; (2)若求的值.