在平面直角坐标系xOy中,已知动圆过点(2,0),且被y轴所截得的弦长为4.(Ⅰ)求动圆圆心的轨迹C1的方程;(Ⅱ)过点P(1,2)分别作斜率为的两条直线,交C1于A,B两点(点A,B异于点P),若,且直线AB与圆相切,求△PAB的面积.
在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:D1E⊥A1D; (2)当E为AB的中点时,求点E到面ACD1的距离; (3)AE等于何值时,二面角D1—EC—D的大小为.
如图,已知平行六面体ABCD—A1B1C1D1的底面是菱形且∠C1CB=∠C1CD=∠BCD=60°, (1)证明 C1C⊥BD; (2)假定CD=2,CC1=,记面C1BD为α,面CBD为β,求二面角α—BD—β的平面角的余弦值; (3)当的值为多少时,可使A1C⊥面C1BD?
已知抛物线y=x2-1上一定点B(-1,0)和两个动点P、Q,当P在抛物线上运动时,BP⊥PQ,则Q点的横坐标的取值范围是_________
条件:(1)截轴弦长为2.(2)被轴分成两段圆弧,其弧长之比为3:1在满足(1)(2)的所有圆中,求圆心到直线距离最小时圆的方程.
画出以A(3,-1)、B(-1,1)、C(1,3)为顶点的△ABC的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z=3x-2y的最大值和最小值