如图,椭圆 的上、下顶点分别为A、B,已知点B在直线上,且椭圆的离心率. (1)求椭圆的标准方程; (2)设P是椭圆上异于A、B的任意一点,PQ⊥y轴,Q为垂足,M为线段PQ的中点,直线AM交直线l于点C,N为线段BC的中点,求证:OM⊥MN.
已知曲线的极坐标方程是,直线的参数方程是(为参数).设直线与轴的交点是,是曲线上一动点,求的最大值.
已知二阶矩阵M有特征值及对应的一个特征向量,并且矩阵M对应的变换将点变换成,求矩阵M。
已知函数(),其图像在处的切线方程为.函数,.(1)求实数、的值;(2)以函数图像上一点为圆心,2为半径作圆,若圆上存在两个不同的点到原点的距离为1,求的取值范围;(3)求最大的正整数,对于任意的,存在实数、满足,使得.
已知函数.(1)求的解集;(2)设函数,若对任意的都成立,求的取值范围.
已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.