已知函数(),其图像在处的切线方程为.函数,.(1)求实数、的值;(2)以函数图像上一点为圆心,2为半径作圆,若圆上存在两个不同的点到原点的距离为1,求的取值范围;(3)求最大的正整数,对于任意的,存在实数、满足,使得.
已知椭圆的对称轴为坐标轴,一个焦点为,点在椭圆上(Ⅰ)求椭圆的谢方程(Ⅱ)已知直线:与椭圆交于两点,求的面积(Ⅲ)设为椭圆上一点,若,求点的坐标
(本小题共12分)如图所示,平面,平面,,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.(Ⅲ)求凸多面体的体积为
某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(Ⅲ)试验结束后,第一次做试验的同学得到的试验数据为,第二次做试验的同学得到的试验数据为,请问哪位同学的实验更稳定?并说明理由.
(本小题满分12分)已知三点的坐标分别是,,其中,且.(Ⅰ)求角的值;(Ⅱ)当 时,求函数 的最大值和最小值.
(本小题满分14分)已知椭圆:上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.(Ⅰ) 求椭圆的方程;(Ⅱ) 过点(,)的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过定点?若存在,求出点的坐标;若不存在,请说明理由.