(本小题满分12分)设函数.(1)若函数在处有极值,求函数的最大值;(2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;②证明:不等式
(本题小满分12分)已知椭圆()的一个焦点与抛物线的焦点重合,椭圆上一点到其右焦点的最短距离为.(Ⅰ)求椭圆的方程;(Ⅱ)记椭圆的上顶点为,是否存在直线交椭圆于,两点,使点恰好为的垂心?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)贵阳市某中学高三第一次摸底考试中名学生数学成绩的频率分布直方图如图所示,其中成绩分组区间是,,,,.(Ⅰ)求图中的值;(Ⅱ)根据频率分布直方图,估计这名学生数学成绩的平均分;(Ⅲ)若这名学生数学成绩某些分数段的人数()与语文成绩相应分数段的人数()之比如下表所示,求语文成绩在之外的人数.
(本小题满分12分)如图所示,四棱锥中,底面为平行四边形,,,平面.(Ⅰ)证明:平面平面;(Ⅱ)在中,,点在上且,求三棱锥的体积.
(本小题满分12分)已知函数()在时有最小值.(Ⅰ)求的值;(Ⅱ)在中,,,分别是角,,所对的边,已知,,,求角的值.
(本小题满分10分)选修4-5:不等式选讲已知(Ⅰ)若,求的解集;(Ⅱ)对任意,任意,恒成立,求实数的最大值.