(本小题满分10分)已知函数,且当时,的最小值为2,(1)求的单调递增区间;(2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
已知数列是等差数列,其中,。 (1)求数列的通项公式; (2)求…的值。
在中,分别为内角所对的边长,,,,求: (1)角的大小; (2)边上的高。
若函数都在区间上有定义,对任意,都有成立,则称函数为区间上的“伙伴函数” (1)若为区间上的“伙伴函数”,求的范围。 (2)判断是否为区间上的“伙伴函数”? (3)若为区间上的“伙伴函数”,求的取值范围
设函数,集合. (1)若,求解析式。 (2)若,且在时的最小值为,求实数的值。
设函数 (1)判断的奇偶性 (2)用定义法证明在上单调递增