(本小题满分12分)设和分别是先后抛掷一枚骰子得到的点数,用随机变量表示函数的极值点的个数.(Ⅰ)求函数有极值的概率;(Ⅱ)求的分布列和数学期望;(Ⅲ)求在先后两次出现的点数中有5的条件下,函数有极值的概率.
在平面直角坐标系中,已知以O为圆心的圆与直线恒有公共点,且要求使圆O的面积最小.(1)写出圆O的方程;(2)圆O与x轴相交于A、B两点,圆内动点P使、、成等比数列,求的范围;(3)已知定点Q(−4,3),直线与圆O交于M、N两点,试判断是否有最大值,若存在求出最大值,并求出此时直线的方程,若不存在,给出理由.
如图,在直四棱柱中,已知,.(1)求证:;(2)设是上一点,试确定的位置,使平面,并证明.
已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,+2ax+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.
如图,平行四边形中,,将沿折起到的位置,使平面平面 (I)求证:(Ⅱ)求三棱锥的侧面积。
已知一个圆经过直线和圆的两个交点,且有最小面积,求此圆的方程.