(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知直线为曲线在点处的切线,为该曲线的另外一条切线,且. (1)求直线、的方程; (2)求由直线、及轴所围成的三角形的面积.
设命题p:方程表示双曲线;命题q: (1)若命题p为真命题,求实数m的取值范围. (2)若命题为真命题,求实数m的取值范围.
动点P到定点D(1,0)的距离与到直线:的距离相等,动点P形成曲线记作C。 (1)求动点P的轨迹方程 (2)过点Q(4,1)作曲线C的弦AB,恰被Q平分,求AB所在直线方程.
如图,四棱锥P—ABCD的底面为菱形且,PA⊥底面ABCD,AB=2,PA=,E为PC的中点。 (1)求直线DE与平面PAC所成角的大小; (2)求二面角E—AD—C的余弦值。
如图,在四棱锥中,底面为直角梯形,∥,,平面⊥底面,为的中点,是棱上的点,,,. (Ⅰ)求证:平面⊥平面; (Ⅱ)若为棱的中点,求异面直线与所成角的余弦值.