设数列的前n项和为,已知,,数列是公差为d的等差数列,.(1)求d的值;(2)求数列的通项公式;(3)求证:.
(本小题满分12分)已知函数.(1)求的单调递增区间;(2)在中,角,,的对边分别为.已知,,试判断的形状.
(本小题满分14分)已知函数.(1)求函数的单调区间;(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;(3)求证:当时,有
(本小题满分13分)动圆与定圆内切,与定圆外切,A点坐标为(1)求动圆的圆心的轨迹方程和离心率;(2)若轨迹上的两点满足,求的值.
(本小题满分12分)如图,在三棱锥中,底面是边长为4的正三角形,平面,M,N分别为AB,SB的中点.(1)求证:(2)求二面角的余弦值.
(本小题满分12分)医生的专业能力参数K可有效衡量医生的综合能力,K越大,综合能力越强,并规定:能力参数K不少于30称为合格,不少于50称为优秀,某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力参数K的频率颁布直方图:(1)求这个样本的合格率、优秀率,并估计能力参数K的平均值;(2)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名。①求这2名医生的能力参数K为同一组的概率;②设这2名医生中能力参数K为优秀的的人数为X,求随机变量X的分布列和期望。