.设有关于的一元二次方程.(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,求上述方程有实根的概率.
,定义,其中n∈N*. (Ⅰ)求的值,并求证:数列{an}是等比数列; (II)若,其中n∈N*,试比较9与大小,并说明理由.
)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1. (I)证明:EM⊥BF; (II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.
在⊿ABC中,a,b,c分别为内角A,B,C所对的边,A<B<C,A,B,C成等差数列,公差为,且也成等差数列. (I)求; (II)若,求⊿ABC的面积。
已知,不等式的解集为M . (I)求M; (II)当时,证明:.
已知点P在曲线:(为参数,)上,点Q在曲线:上 (1)求曲线的普通方程和曲线的直角坐标方程; (2)求点P与点Q之间距离的最小值.