已知函数 f(x)=ax+(1﹣a)lnx+(a∈R)(Ⅰ)当a=0时,求 f(x)的极值;(Ⅱ)当a<0时,求 f(x)的单调区间;(Ⅲ)方程 f(x)=0的根的个数能否达到3,若能请求出此时a的范围,若不能,请说明理由.
已知,求的值.
已知函数在[1,+∞)上为增函数,且,,∈R. (1)求θ的值; (2)若在[1,+∞)上为单调函数,求m的取值范围; (3)设,若在[1,e]上至少存在一个,使得成立, 求的取值范围.
如图,在三棱拄中,侧面,已知AA1=2,,. (1)求证:; (2)试在棱(不包含端点上确定一点的位置,使得; (3)在(2)的条件下,求二面角的平面角的正切值.
如果甲乙两个乒乓球选手进行比赛,而且他们在每一局中获胜的概率都是,规定使用“七局四胜制”,即先赢四局者胜. (1)试分别求甲打完4局、5局才获胜的概率; (2)设比赛局数为ξ,求ξ的分布列及期望.
在中,为锐角,角所对的边分别为,且 (I)求的值; (II)若,求的值.