(本小题满分13分)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求:(Ⅰ)打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数的分布列与期望E.
(1)已知角的顶点在原点,始边与x轴正半轴重合,终边为射线4x+3y=0(x≥0),求5sin-3 tan+2cos的值. (2)化简:.其中.
函数=的定义域为,集合=, (1)求:集合;(2)若,求的取值范围.
计算:⑴ ;⑵.
已知函数(,),. (Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立; (Ⅱ)记,若在上单调递增,求实数的取值范围;
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。 (Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。 (Ⅱ)若的面积为,求向量的夹角;