(本小题满分12分)已知函数()的最小正周期为.(Ⅰ)求的值;(Ⅱ)求函数在区间上的取值范围.
(本小题满分15分)今年的国庆假期是实施免收小型客车高速通行费后的第一个重大节假日,有一个自驾游车队。该车队是由31辆车身长都约为5m(以5m计算)的同一车型组成的,行程中经过一个长为2725m的隧道(通过该隧道的车速不能超过25m/s),若车队匀速通过该隧道,设车队的速度为m/s ,根据安全和车流的需要,当时,相邻两车之间保持20m的距离;当时,相邻两车之间保持m的距离.自第1辆车车头进入隧道至第31辆车车尾离开隧道所用的时间为.(1)将表示为的函数;(2)求该车队通过隧道时间的最小值及此时车队的速度.
(本小题满分15分)已知二次函数.(1)当时,求不等式的解集;(2)若不等式对恒成立,求的取值范围.
(本小题满分14分)已知椭圆过点,离心率,为椭圆上的一点,为抛物线上一点,且为线段的中点.(1)求椭圆的方程;(2)求直线的方程.
(本小题满分14分)已知,.(1)若,命题“或”为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.
(本小题满分14分)已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,D是AB的中点.(Ⅰ)求动点D的轨迹C的方程;(Ⅱ)若过点(1,0)的直线l与曲线C交于不同两点P、Q,① 当|PQ|=3时,求直线l的方程;② 试问在x轴上是否存在点E(m,0),使·恒为定值?若存在,求出E点的坐标及定值;若不存在,请说明理由.