(本小题满分10分)已知圆过定点,圆心在抛物线上,、为圆与轴的交点.(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.
已知集合 (1)若,求实数的取值范围; (2)若,求实数的取值范围.
已知函数,. (1)若,求函数的单调区间; (2)若恒成立,求实数的取值范围; (3)设,若对任意的两个实数满足,总存在,使得成立,证明:.
已知中心在原点的椭圆C:的一个焦点为,为椭圆C上一点,的面积为. (1)求椭圆C的方程; (2)是否存在平行于OM的直线,使得直线与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线的方程;若不存在,请说明理由.
已知等差数列的首项,公差,且第2项、第5项、第14项分别是等比数列的第2项、第3项、第4项. (1)求数列、的通项公式; (2)设数列对任意的,均有成立,求.
某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下表:
(1)计算这50天的日平均销售量; (2)若以频率为概率,且每天的销售量相互独立. ①求5天中该种商品恰有2天的销售量为1.5吨的概率; ②已知每吨该商品的销售利润为2万元,X表示该种商品两天销售利润的和,求X的分布列和数学期望.