(本小题满分12分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.(1)若,求外接圆的方程;(2)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
(本小题满分12分) 设数列{}的前n项和满足:=n-2n(n-1).等比数列{}的前n项和为,公比为,且=+2. (1)求数列{}的通项公式; (2)设数列{}的前n项和为,求证:≤<.
(12分)已知函数在上是增函数,在上为减函数。 (1)求f(x) ,g(x)的解析式; (2)求证:当x>0时,方程f(x)=g(x)+2有唯一解。
(12分)设函数满足条件f(-1+x)=f(-1-x),且关于x的不等式的解集为 (1)求函数f(x)的解析式; (2)若时,不等式恒成立,求实数t的取值范围。
(12分)若函数y=lg(3-4x+x2)的定义域为M,.当x∈M时, 求f(x)=2x+2-3×4x的最值及相应的x的值.
(12分)已知函数f(x)= (1)判断f(x)的奇偶性, (2)解不等式f(x)≥