(本小题12分)如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AC=BC,D、E、F分别为棱AB、BC、A1C1的中点。(Ⅰ)证明:EF//平面A1CD;(Ⅱ)证明:平面A1CD⊥平面ABB1A1。
已知不等式的解集为,不等式的解集为,. (1)求集合; (2)若,求实数的取值范围; (3)若存在,使得不等式成立, 求实数的取值范围.
已知命题p:函数y=xm在(0,+∞)为减函数命题q:复数z=m2-5m-6+(m-2)i,(m∈R)在复平面内的对应点在第三象限.如果p或q为真命题,p且q为假命题,求m的取值范围.
已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=. (1)试确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f(t-1)+f(t)<0.
已知集合A =, (1)若A,求a的值;(2)若A中有且只有一个元素,求a的值,并求出这个元素。
已知,函数 (1)当时,求函数在点(1,)的切线方程; (2)求函数在[-1,1]的极值; (3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。