如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.
已知△ABC的面积为a,O、D分别是边AC、BC的中点.(1)画图:在图1中将点D绕点O旋转180°得到点E, 连接AE、CE.填空:四边形ADCE的面积为 ;(2)在(1)的条件下,若F1是AB的中点,F2是AF1的中点,F3是AF2的中点,…,Fn是AFn -1的中点 (n为大于1的整数), 则△F2CE的面积为 ; △FnCE的面积为 .
如图,AB是⊙O的直径,点C在⊙O上,CE^AB于E, CD平分ÐECB, 交过点B的射线于D, 交AB于F, 且BC=BD. (1)求证:BD是⊙O的切线; (2)若AE="9," CE="12," 求BF的长.
已知二次函数y=x2+(3-)x-3(m>0)的图象与x轴交于点 (x1, 0)和(x2, 0),且x1<x2.(1)求x2的值;(2)求代数式的值.
某商店销售一种进价为20元/双的手套,经调查发现,该种手套每天的销售量w(双)与销售单价x(元)满足(20≤x≤40),设销售这种手套每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时, 每天的利润最大?最大利润是多少?
在一个口袋中有3个完全相同的小球,把它们分别标号为1, 2, 3, 随机地摸出一个 小球记下标号后放回, 再随机地摸出一个小球记下标号, 求两次摸出小球的标号 之和等于4的概率.