已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD. (1)如图1,若AB=AE,∠DAC=∠EAB=60°,求∠BFC的度数; (2)如图2,∠ABC=α,∠ACD=β,BC=4,BD=6. ①若α=30°,β=60°,AB的长为 ; ②若改变α,β的大小,但α+β=90°,△ABC的面积是否变化?若不变,求出其值;若变化,说明变化的规律.
如图,四边形ABCD中,∠ABC=∠ADC=90°,E是对角线AC的中点,连接BE、DE(1)若AC=10,BD=8,求△BDE的周长;(2)判断△BDE的形状,并说明理由.
已知:如图,在△ABC中,CD⊥AB垂足为D,BE⊥AC垂足为E,连接DE,点G、F分别是BC、DE的中点.求证:GF⊥DE.
如图,已知△ABC是等边三角形,BD是△ABC的中线,延长BC至E,使CE=CD,连接DE,试说明BD=ED的理由.
如图,BD是等边△ABC的高,E是BC延长线上一点,且.(1)直接写出CE与CD的数量关系;(2)试说明△BDE是等腰三角形.
如图,在△ABC中,∠B=∠C=30°,D是BC的中点,连接AD,求∠BAD与∠ADC的度数.