(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的非负半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.
已知函数的图象过点(); (1)求A的值; (2)已知,求的值。
某社团组织名志愿者利用周末和节假日参加社会公益活动,活动内容是:1、到各社区宣传慰问,倡导文明新风;2、到指定的医院、福利院做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下22的列联表所示:
(1)填上表中所空缺的数值。 (2)分层抽样方法在做义工的志愿者中随机抽取6名,年龄在20至40岁与大于40岁的应该各抽取几名? (3)根据(2)抽取的6名志愿者中任取2名,求选取的2人中分别来自上述年龄段各1人的概率。
已知函数. (1)求的最大值和最小正周期; (2)若,是第二象限的角,求.
(本小题满分14分)如图,已知圆E:,点,P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设直线与(Ⅰ)中轨迹相交于两点,直线的斜率分别为.△的面积为,以为直径的圆的面积分别为.若恰好构成等比数列,求的取值范围.
(本小题满分14分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是(单位:万元).现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过投资收益的20%. (Ⅰ)若建立函数模型制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件; (Ⅱ)现有两个奖励函数模型:;.试分析这两个函数模型是否符合公司要求.