如图,已知为圆的一条直径,以端点为圆心的圆交直线于两点,交圆于两点,过点作垂直于的直线,交直线于点.(Ⅰ)求证:四点共圆;(Ⅱ)若,求外接圆的半径.
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.
已知△ABC的三个内角A、B、C所对的边分别为a、b、c,向量(Ⅰ)求角A的大小;(Ⅱ)若,试判断b·c取得最大值时△ABC形状.
如图,在三棱锥中,底面,点,分别在棱上,且(Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成的角的大小;
已知,数列是首项为a,公比也为a的等比数列,令,求数列的前项和。
已知二次函数的二次项系数为,且不等式的解集为,(1)若方程有两个相等的实根,求的解析式;(2)若的最大值为正数,求的取值范围.