已知函数.(Ⅰ)当a=1时,求函数的最小值;(Ⅱ)当a≤0时,讨论函数的单调性;(Ⅲ)是否存在实数a,对任意的x1,x2∈(0,+∞),且,有,恒成立,若存在求出a的取值范围,若不存在,说明理由.
(本小题满分13分)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在一次游戏中, (i)摸出3个白球的概率; (ii)获奖的概率; (Ⅱ)求在两次游戏中获奖次数的分布列.
(本小题满分12分)已知函数 (1)当时,求曲线在点处的切线方程; (2)求函数的极值.
(本小题满分12分)证明:.
六人按下列要求站一横排,分别有多少种不同的站法? (l)甲不站两端; (2)甲、乙不相邻; (3)甲、乙之间间隔两人; (4)甲不站左端,乙不站右端.
若的展开式的二项式系数和为128. (1)求的值; (2)求展开式中的常数项; (3)求展开式中二项式系数的最大项.