已知椭圆 的左、右焦点分别是、,是椭圆右准线上的一点,线段的垂直平分线过点.又直线:按向量平移后的直线是,直线:按向量平移后的直线是 (其中).(1)求椭圆的离心率的取值范围.(2)当离心率最小且时,求椭圆的方程.(3)若直线与相交于(2)中所求得的椭圆内的一点,且与这个椭圆交于、两点,与这个椭圆交于、两点.求四边形ABCD面积的取值范围.
三棱柱的直观图和三视图如下图所示,其侧视图为正三角形(单位cm) ⑴当x=4时,求几何体的侧面积和体积 ⑵当x取何值时,直线AB1与平面BB1C1C和平面A1B1C1所成角大小相等。
如图,已知四棱锥P﹣ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC=3,侧面PBC⊥底面ABCD,O是BC的中点. (1)求证:DC∥平面PAB; (2)求四棱锥P﹣ABCD的体积.
已知数列的前项和满足:(为常数, (1)求的通项公式; (2)设,若数列为等比数列,求的值。
设数列{}的前n项和为,且. ⑴证明数列{}为等比数列 ⑵求{}的前n项和
已知椭圆过点,且离心率. (1)求椭圆C的方程; (2)已知过点的直线与该椭圆相交于A、B两点,试问:在直线上是否存在点P,使得是正三角形?若存在,求出点P的坐标;若不存在,请说明理由.