已知椭圆的离心率为,且它的一个焦点的坐标为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过焦点的直线与椭圆相交于两点,是椭圆上不同于的动点,试求的面积的最大值.
已知函数f(x)=ex-e-x(x∈R且e为自然对数的底数).(1)判断函数f(x)的奇偶性与单调性;(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x都成立?若存在,求出t;若不存在,请说明理由.
已知二次函数f(x)=ax2+bx+1(a>0),F(x)=若f(-1)=0,且对任意实数x均有f(x)≥0成立.(1)求F(x)的表达式;(2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围.
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点对称的点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.(1)若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)3成立,求数列{an}的通项公式;(2)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.(ⅰ)求a1,a2的值;(ⅱ)求数列{an}的通项公式.
已知函数f(x)=aln x=(a为常数).(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-5=0垂直,求a的值;(2)求函数f(x)的单调区间;(3)当x≥1时,f(x)≤2x-3恒成立,求a的取值范围.