已知无穷数列{an}的各项均为正整数,Sn为数列{an}的前n项和.(1)若数列{an}是等差数列,且对任意正整数n都有Sn3=(Sn)3成立,求数列{an}的通项公式;(2)对任意正整数n,从集合{a1,a2,…,an}中不重复地任取若干个数,这些数之间经过加减运算后所得数的绝对值为互不相同的正整数,且这些正整数与a1,a2,…,an一起恰好是1至Sn全体正整数组成的集合.(ⅰ)求a1,a2的值;(ⅱ)求数列{an}的通项公式.
已知定义域为R的函数是奇函数.(Ⅰ)求a的值;(Ⅱ)判断的单调性并证明;(Ⅲ)若对任意的,不等式恒成立,求的取值范围.
已知函数是定义在上的偶函数,且时,,函数的值域为集合.(I)求的值;(II)设函数的定义域为集合,若,求实数的取值范围.
已知,设命题P: ;命题Q:函数f(x)=3x2+2mx+m+有两个不同的零点.求使命题“P或Q”为真命题的实数的取值范围.
已知集合(I)当=3时,求;(Ⅱ)若,求实数的值.
设函数f(θ)=sinθ+cosθ,其中,角θ的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤θ≤π.(1)若点P的坐标为,求f(θ)的值;(2)若点P(x,y)为平面区域Ω:,上的一个动点,试确定角θ的取值范围,并求函数f(θ)的最小值和最大值.