(本小题满分13分)已知函数.(Ⅰ)当时,求函数在区间上的最大值和最小值;(Ⅱ)若函数在区间上的值恒为正数,求m的取值范围.
在中,角A、B、C的对边分别为a、b、c,且角A、B、C成等差教列.(1)若,求边c的值; (2)设,求t的最大值.
已知数列的首项. (1)求证:数列为等比数列; (2)记,若,求最大正整数的值; (3)是否存在互不相等的正整数,使成等差数列,且成等比数列?如果存在,请给予证明;如果不存在,请说明理由.
已知等差数列{}的首项为a.设数列的前n项和为Sn,且对任意正整数n都有. (1)求数列{}的通项公式及Sn; (2)是否存在正整数n和k,使得成等比数列?若存在,求出n和k的值;若不存在,请说明理由.
成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、、. (1)求数列的通项公式; (2)数列的前n项和为,求证:数列是等比数列.
已知向量, (1)求; (2)若的最小值是,求实数的值.