(本小题共12分)长时间用手机上网严重影响着学生的身体健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;(Ⅱ)从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b,求a>b的概率.
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,∠ABC=∠CAD=90°,且PA=AB=BC,点E是棱PB上的动点. (1)若PD∥平面EAC,试确定点E在棱PB上的位置. (2)在(1)的条件下,求二面角A-CE-P的余弦值.
在如图所示的几何体中,四边形ACC1A1是矩形,FC1∥BC,EF∥A1C1,∠BCC1=90°,点A,B,E,A1在一个平面内,AB=BC=CC1=2,AC=2. 证明:(1)A1E∥AB. (2)平面CC1FB⊥平面AA1EB.
如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,点M在AD1上移动,点N在BD上移动,D1M=DN=a(0<a<),连接MN. (1)证明对任意a∈(0,),总有MN∥平面DCC1D1. (2)当a为何值时,MN的长最小?
如图所示,四边形EFGH所在平面为三棱锥A-BCD的一个截面,四边形EFGH为平行四边形. (1)求证:AB∥平面EFGH,CD∥平面EFGH. (2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.若M是线段AD的中点, 求证:GM∥平面ABFE.