如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为,和.(1)求烟囱AB的高度;(2)如果要在CE间修一条直路,求CE的长.
已知函数(1)求不等式的解集;(2)若关于的不等式的解集非空,求实数的取值范围.
在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,过点的直线的参数方程为(为参数),直线与曲线相交于两点.(1)写出曲线的直角坐标方程和直线的普通方程;(2)若,求的值.
如图,圆的圆心在的直角边上,该圆与直角边相切,与斜边交于,,.(1)求的长; (2)求圆的半径.
已知函数.(1)当时,求函数的极值;(2)若函数在区间上是减函数,求实数的取值范围;(3)当时,函数图像上的点都在所表示的平面区域内,求实数的取值范围.
已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).(1)求椭圆的方程;(2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.