(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率依次为,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手进入第四轮才被淘汰的概率;(Ⅱ)求该选手至多进入第三轮考核的概率.
(本题满分12分)在平面直角坐标系xOy中,点A(-1,-2)、B(2,3)、C(-2,-1)。 (1)求以线段AB、AC为邻边的平行四边形两条对角线的长; (2)设实数t满足()·=0,求t的值。
(本题满分12分)已知,,分别求当为何值时 (1)与垂直? (2)与平行?平行时它们是同向还是反向? (3)与的夹角是钝角?
(本题满分10分)设是第二象限的角,,求的值.
(本小题满分15分)如图所示,已知椭圆和抛物线有公共焦点, 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点 (1)写出抛物线的标准方程; (2)若,求直线的方程; (3)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴长的最小值。
(本小题满分15分) 已知函数 (I)当的单调区间; (II)若任意给定的,使得的取值范围。