定义新运算:对于任意实数,a、b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2﹣5)+1=2×﹣(﹣3)+1=﹣6+1=﹣5.(1)求3⊕(﹣4)的值;(2)若4⊕x的值大于9,求x的取值范围.
计算:(1) (2)
作图题.如图,在同一平面内有四个点A、B、C、D.①画射线BD ②画直线BC ③连结AC与射线BD相交于点P ④延长线段AD与直线BC相交于点Q
如图,Rt△PQR中,∠PQR=90°,当PQ=RQ时,.根据这个结论,解决下面问题:在梯形ABCD中,∠B=45°,AD//BC,AB=5,AD=4,BC=,P是线段BC上一动点,点P从点B出发,以每秒个单位的速度向C点运动.(1)当BP= 时,四边形APCD为平行四边形;(2)求四边形ABCD的面积;(3)设P点在线段BC上的运动时间为t秒 ,当P运动时,△APB可能是等腰三角形吗?如能,请求出t的值;如不能,请说明理由
如图,长为50cm,宽为cm的大长方形被分割为8小块,除阴影A、B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为cm.(1)从图可知,每个小长方形较长一边长是 cm(用含的代数式表示);(2)求图中两块阴影A、B的周长和(可以用的代数式表示);(3)分别用含,的代数式表示阴影A、B的面积,并求为何值时两块阴影部分的面积相等.
(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论“DE=BD+CE”是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.