如图,在ΔABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.
(1)求证:四边形DCFG是平行四边形.
(2)当BE=4,CD=38AB时,求⊙O的直径长.
先化简,再求值:,其中,.
解不等式组
如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于点P,连结MP。已知动点运动了秒。⑴请直接写出PN的长;(用含的代数式表示)⑵若0秒≤≤1秒,试求△MPA的面积S与时间秒的函数关系式,利用函数图象,求S的最大值。⑶若0秒≤≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有的对应值;若不能,试说明理由。
如图,等腰梯形ABCD中,AB=15,AD=20,∠C=30º.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围.(2)当五边形BCDNM面积最小时,请判断△AMN的形状.
将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.