一个容器中有一个进水管和两个出水管,从某一时刻开始2min内只进水不出水,在随后的4min内开启了一个出水管,既进水又出水,每个出水管每分钟出水7.5L,每分钟的进水量和出水量保持不变,容器内的水量y(L)与时间x(min)之间的函数关系如图所示.(1)求a的值;(2)当2≤x≤6时,求y关于x的函数关系式;(3)若在6min之后,两个出水管均开启,进水管关闭,请在图中补全函数图象.
分解因式:
已知:如图,在△ABC中,AB=AC,∠BAC=,且60°<<120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—.(1)用含的代数式表示∠APC,得∠APC =_______________________;(2)求证:∠BAP=∠PCB;(3)求∠PBC的度数.
观察例题:∵,即, ∴的整数部分为2,小数部分为。请你观察上述的规律后试解下面的问题: 如果的小数部分为, 的小数部分为,求的值.
如图⑴,一等腰直角三角尺()的两条直角边与正方形的两条边分别重合在一起. 现正方形保持不动,将三角尺绕斜边的中点(点也是中点)旋转.① 若将三角尺绕斜边的中点按顺时针方向旋转到如图⑵,当与相交于点,与相交于点时,通过观察或测量、的长度,猜想、满足的数量关系,并证明你的猜想;② 若三角尺旋转到如图⑶所示的位置时,线段的延长线与的延长线相交于点,线的延长线与的延长线相交于点,此时,①中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.