国旗法对国旗的构成由明确的规定,国旗应为长方形,长与宽的比为3:2,某学校所使用的国旗正是按这一比例制作的,长为2.4m.已知学校的旗杆高为10m,在无风的天气里,国旗会自然下垂,求国旗下垂时最低处离地面的距离是多少?(结果保留一位小数,≈3.6)
文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下: 文文:“过点作的中垂线,垂足为”; 彬彬:“作的角平分线”. 数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.” (1)请你简要说明文文的辅助线作法错在哪里. (2)根据彬彬的辅助线作法,完成证明过程.
如图,在直角坐标系中,的两条直角边分别在轴的负半轴,轴的负半轴上,且.将绕点按顺时针方向旋转,再把所得的像沿轴正方向平移1个单位,得. (1)写出点的坐标; (2)求点和点之间的距离.
我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程. ①;②;③;④.
计算:
如图①,正方形的顶点的坐标分别为,顶点在第一象限.点从点出发,沿正方形按逆时针方向匀速运动,同时,点从点出发,沿轴正方向以相同速度运动.当点到达点时,两点同时停止运动,设运动的时间为秒. (1)求正方形的边长. (2)当点在边上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分(如图②所示),求两点的运动速度. (3)求(2)中面积(平方单位)与时间(秒)的函数关系式及面积取最大值时点的坐标. (4)若点保持(2)中的速度不变,则点沿着边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小.当点沿着这两边运动时,使的点有 个. (抛物线的顶点坐标是.)