解下列方程组或不等式(组) (1) (2) (3)3x+1>7 (4).
图1是一商场的推拉门,已知门的宽度 AD = 2 米,且两扇门的大小相同(即 AB = CD ) ,将左边的门 AB B 1 A 1 绕门轴 A A 1 向里面旋转 37 ° ,将右边的门 CD D 1 C 1 绕门轴 D D 1 向外面旋转 45 ° ,其示意图如图2,求此时 B 与 C 之间的距离(结果保留一位小数).(参考数据: sin 37 ° ≈ 0 . 6 , cos 37 ° ≈ 0 . 8 , 2 ≈ 1 . 4 )
某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元 / 千克,乙种水果18元 / 千克.6月份,这两种水果的进价上调为:甲种水果10元 / 千克,乙种水果20元 / 千克.
(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?
(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?
如图,已知一次函数 y 1 = k 1 x + b ( k 1 ≠ 0 ) 与反比例函数 y 2 = k 2 x ( k 2 ≠ 0 ) 的图象交于 A ( 4 , 1 ) , B ( n , − 2 ) 两点.
(1)求一次函数与反比例函数的解析式;
(2)请根据图象直接写出 y 1 < y 2 时 x 的取值范围.
已知二次函数 y = − x 2 + bx + c + 1 ,
①当 b = 1 时,求这个二次函数的对称轴的方程;
②若 c = − 1 4 b 2 − 2 b ,问: b 为何值时,二次函数的图象与 x 轴相切?
③若二次函数的图象与 x 轴交于点 A ( x 1 , 0 ) , B ( x 2 , 0 ) ,且 x 1 < x 2 , b > 0 ,与 y 轴的正半轴交于点 M ,以 AB 为直径的半圆恰好过点 M ,二次函数的对称轴 l 与 x 轴、直线 BM 、直线 AM 分别交于点 D 、 E 、 F ,且满足 DE EF = 1 3 ,求二次函数的表达式.
如图所示, Rt Δ PAB 的直角顶点 P ( 3 , 4 ) 在函数 y = k x ( x > 0 ) 的图象上,顶点 A 、 B 在函数 y = t x ( x > 0 , 0 < t < k ) 的图象上, PA / / y 轴,连接 OP , OA ,记 ΔOPA 的面积为 S ΔOPA , ΔPAB 的面积为 S ΔPAB ,设 w = S ΔOPA − S ΔPAB .
①求 k 的值以及 w 关于 t 的表达式;
②若用 w max 和 w min 分别表示函数 w 的最大值和最小值,令 T = w max + a 2 − a ,其中 a 为实数,求 T min .