如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积.
(本题7分)世博会某国国家馆模型的平面图如图所示,其外框是一个大正方形,中间四个大小相同的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米. (1)若设展厅的正方形边长为x米,用含x的代数 式表示核心筒的正方形边长为米. (2)若设核心筒的正方形边长为y米,求该模型的平面图外框大正方形的周长及每个休息厅的图形周长.(用含y的代数式表示) (3)若设核心筒的正方形边长为2米,求该国家展厅(除四根核心筒)的占地面积。
(本题5分)某自行车厂一周计划生产1050辆自行车,平均每天生产150辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):
(1)产量最多的一天比产量最少的一天多生产辆; (2)根据记录可知前三天共生产辆; (3)该厂实行计件工资制,每辆车50元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?
(本题5分)已知, (1)求的值;(结果用x、y表示) (2)当与互为相反数时,求(1)中代数式的值.
解方程:(本题共2小题,每题3分,共6分) (1)2(2x+1)=1-5(x-2); (2)-=1
(本题8分)如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足. (1)求A、B两点之间的距离; (2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动.设运动的时间为t(秒), ①分别表示甲、乙两小球到原点的距离(用t表示); ②求甲、乙两小球到原点的距离相等时经历的时间.