当时,求的值.
已知关于x的方程x2-(m+2)x+(2m-1)=0的一个根是2,请求出方程的另一个根,并求以此两根为边长的直角三角形的面积。
设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.(1)反比例函数是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若二次函数是闭区间[a,b]上的“闭函数”,求实数a,b的值.
阅读理解:对于任意正实数a、b,∵(-)2≥0,∴a-2+b≥0,∴a+b≥2,只有当a=b时,等号成立. 结论:在a+b≥2(a、b均为正实数)中,若ab为定值p,则a+b≥2,只有当a=b时,a+b有最小值2. 根据上述内容,回答下列问题: (1)若m>0,只有当m= 时,m+有最小值 ; 若m>0,只有当m= 时,2m+有最小值 . (2)如图,已知直线L1:y=x+1与x轴交于点A,过点A的另一直线L2与双曲线y=(x>0)相交于点B(2,m),求直线L2的解析式. (3)在(2)的条件下,若点C为双曲线上任意一点,作CD∥y轴交直线L1于点D,试求当线段CD最短时,点A、B、C、D围成的四边形面积.
我们新定义一种三角形:两边平方和等于第三边平方的两倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A,B重合),D是半圆的中点,C,D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.
当时,试用代数和几何两种方法探究和的大小关系。