在“五•一”期间,“佳佳”网店购进A、B两种品牌的服装进行销售,已知B种品牌服装的进价比A种品牌服装的进价每件高20元,2件A种品牌服装与3件B种品牌服装进价共560元.(1)求购进A、B两种品牌服 装的单价;(2)该网站拟以不超过11200元的总价购进这种两品牌服装共100件,并全部售出.其中A种品牌服装的售价为150元/件,B种品牌服装的售价为200元/件,该网站为了获取最大利润,应分别购进A、B两种品牌服装各多少件?所获取的最大利润是多少?
已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD、AB于E、F,求证:AE=CF.
在平面直角坐标系中,直线y=kx-2经过点A(-2,0),求不等式4kx+3≤0的解集.
化简:
如图,∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线. (1)当点D恰好落在垂线上时,求OA的长; (2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△,当点O′与点E重合时停止平移.设平移的时间为t秒,△与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围; (3)在(2)问的平移过程中,若与线段交于点P,连接,,,是否存在这样的t,使△是等腰三角形?若存在,求出t的值;若不存在,请说明理由.
如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(,),与y轴交于C(,)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的解析式; (2)若抛物线的顶点为点D,求△BCD的面积; (3)设M是(1)所得抛物线上第四象限内的一个动点,过点M作直线l⊥x 轴于点F,交直线BC于点N。试问:线段MN的长度是否存在最大值?若存在,求出它最大值及此时M点的坐标;若不存在,请说明理由.