(本小题满分14分)已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为.(Ⅰ)求椭圆的方程;(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点,求面积的最大值.
已知函数. (1)证明:不论为何实数总为增函数 (2)确定的值, 使为奇函数; (3)当为奇函数时, 求的值域.
设f(x)为定义在R上的偶函数,当时,y=x;当x>2时,y=f(x)的图像时顶点在P(3,4),且过点A.(2,2)的抛物线的一部分 (1)写出函数f(x)在上的解析式; (2)在下面的直角坐标系中直接画出函数f(x)的图像; (3)写出函数f(x)值域
计算: (1) (2)
已知集合,, 求:(1);(2)
已知函数,(其中为自然对数的底数,常数). (1)若对任意,恒成立,求正实数的取值范围; (2)在(1)的条件下,当取最大值时,试讨论函数在区间上的单调性; (3)求证:对任意的,不等式成立.