(本小题满分13分)已知函数.(Ⅰ)求函数的定义域;(Ⅱ)若,求的值.
(本小题满分13分) 设函数。 (1)求的单调区间; (2)若当时,(其中)不等式恒成立,求实数的取值范围; (3)试讨论关于的方程:在区间上的根的个数。
(本小题满分14分) 已知是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足: 。 (1)求f(0),f(1)的值; (2)判断的奇偶性,并证明你的结论; (3)若,求数列{un}的前n项的和Sn 。
((本题满分14分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。 (1)假设这名射手射击5次,求恰有2次击中目标的概率; (2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率; (3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.
((本小题满分13分)设O为坐标原点,曲线x2+y2+2x-6y+1=0上有两点P、Q关于直线x+my+4=0对称,又满足OP⊥OQ. (1)求m的值; (2)求直线PQ的方程.
(本题满分12分)坛子里放着5个相同大小,相同形状的咸鸭蛋,其中有3个是绿皮的,2个是白皮的.如果不放回地依次拿出2个鸭蛋,求: (1)第一次拿出绿皮鸭蛋的概率; (2)第1次和第2次都拿到绿皮鸭蛋的概率; (3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.