(本小题满分13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为.(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;(Ⅱ)求的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.
如图,设点A和B为抛物线上原点以外的两个动点,已知OA⊥OB,OM⊥AB求点M的轨迹方程,并说明它表示什么曲线
已知椭圆的方程为,点的坐标满足过点的直线与椭圆交于、两点,点为线段的中点,求: (1)点的轨迹方程; (2)点的轨迹与坐标轴的交点的个数.
设f(x)是定义在区间上以2为周期的函数,对,用表示区间已知当时,f(x)=x2. (1)求f(x)在上的解析表达式; (2)对自然数k,求集合不等的实根}
设函数,其中. (1)解不等式; (2)求的取值范围,使函数在区间上是单调函数.
(本小题满分14分)已知函数,,其中,为自然对数的底数. (Ⅰ)当时,求函数的极小值; (Ⅱ)对,是否存在,使得成立?若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)设,当时,若函数存在三个零点,且,求证: .