(本小题共13分)已知,或1,,对于,表示U和V中相对应的元素不同的个数.(Ⅰ)令,存在m个,使得,写出m的值;(Ⅱ)令,若,求证:;(Ⅲ)令,若,求所有之和.
已知函数.(1)求函数的单调区间;(2)若,设,是函数图像上的任意两点(),记直线AB的斜率为,求证:.
已知双曲线,分别是它的左、右焦点,是其左顶点,且双曲线的离心率为.设过右焦点的直线与双曲线C的右支交于两点,其中点位于第一象限内.(1)求双曲线的方程;(2)若直线分别与直线交于两点,求证:;(3)是否存在常数,使得恒成立?若存在,求出的值,若不存在,请说明理由。
已知数列满足,,是数列的前n项和,且有.(1)证明:数列为等差数列;(2)求数列的通项公式;(3)设,记数列的前n项和,求证:.
如图,三棱柱侧棱与底面垂直,且所有棱长都为4,D为CC1中点.(1)求证:;(2)求二面角的余弦值.
已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球.(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望