已知动圆Q过定点,且与直线相切,椭圆的对称轴为坐标轴,点为坐标原点,是其一个焦点,又点在椭圆上.(Ⅰ)求动圆圆心的轨迹的标准方程和椭圆的标准方程;(Ⅱ)若过的动直线交椭圆于点,交轨迹于两点,设为 的面积,为的面积,令,试求的最小值.
在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线与曲线交于点(点在第一象限). (Ⅰ)求曲线的方程; (Ⅱ)已知为曲线的左顶点,平行于的直线与曲线相交于两点.判断直线是否关于直线对称,并说明理由.
在如图所示的几何体中,四边形是等腰梯形,∥,,.在梯形中,∥,且,⊥平面. (Ⅰ)求证:; (Ⅱ)若二面角为,求的长.
已知圆的圆心在直线上,且与轴交于两点,. (Ⅰ)求圆的方程; (Ⅱ)求过点的圆的切线方程; (Ⅲ)已知,点在圆上运动,求以,为一组邻边的平行四边形的另一个顶点轨迹方程.
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面. (Ⅰ)求证:平面平面; (Ⅱ)求四棱锥的体积.
已知椭圆:的左、右焦点分别为,离心率为,点在椭圆上. (Ⅰ)求椭圆的方程; (Ⅱ)设过点的直线与椭圆相交于两点,若的中点恰好为点,求直线的方程.