(本小题满分12分)某单位建造一间背面靠墙的小房,地面面积为12 m2,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,屋顶的造价为5800元.如果墙高为3 m,且不计房屋背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价是多少?
已知曲线C的极坐标方程为ρ=6sinθ,以极点为原点、极轴为x轴非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C截得的线段的长度.
已知极坐标方程为ρcosθ+ρsinθ-1=0的直线与x轴的交点为P,与椭圆(θ为参数)交于点A、B,求PA·PB的值.
在极坐标系中,圆C的方程为ρ=2sin,以极点为坐标原点、极轴为x轴正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),判断直线l和圆C的位置关系.
在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数),试求直线l与曲线C的普通方程,并求出它们的公共点的坐标.
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A、B两点,求|AB|.