蚌埠市某中学高三年级从甲(文)、乙(理)两个科组各选出7名学生参加高校自主招生数学选拔考试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲组学生的平均分是85,乙组学生成绩的中位数是83.(1)求x和y的值;(2)计算甲组7位学生成绩的方差;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲组至少有一名学生的概率.
设函数. (1)若曲线处的切线与直线垂直,求的值; (2)求函数的单增区间; (3)若函数有两个极值点,求证:.
已知数列的前项和,数列满足. (1)求; (2)设为数列的前项和,求,并求满足时的最大值.
如图,菱形的边长为6,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:面; (2)求到平面的距离.
已知三棱柱底面,分别为的中点. (1)求证:平面; (2)求证:平面平面.
为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下: 男生:
女生:
(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取3人,求此3人中恰有一人为“严重睡眠不足”的概率; (2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?