已知数列的前项和,数列满足.(1)求;(2)设为数列的前项和,求,并求满足时的最大值.
如图,在四棱锥中,⊥底面,四边形是直角梯形,⊥,∥,. (Ⅰ)求证:平面⊥平面; (Ⅱ)若二面角的余弦值为,求.
某班同学在“十八大”期间进行社会实践活动,对[25,55]岁的人群随机抽取人进行了一次当前投资生活方式----“房地产投资”的调查,得到如下统计和各年龄段人数频率分布直方图:(Ⅰ)求n,a,p的值;(Ⅱ)从年龄在[40,50)岁的“房地产投资”人群中采取分层抽样法抽取9人参加投资管理学习活动,其中选取3人作为代表发言,记选取的3名代表中年龄在[40,45)岁的人数为,求的分布列和期望.
设等比数列{}的前项和为,已知对任意的,点,均在函数的图像上.(Ⅰ)求的值;(Ⅱ)记求数列的前项和.
设函数,.⑴ 求不等式的解集;⑵ 如果关于的不等式在上恒成立,求实数的取值范围.
在直角坐标系中,曲线的参数方程为,以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.⑴ 求曲线的普通方程和曲线的直角坐标方程;⑵ 当时,曲线和相交于、两点,求以线段为直径的圆的直角坐标方程.