设函数.(1)若曲线处的切线与直线垂直,求的值;(2)求函数的单增区间;(3)若函数有两个极值点,求证:.
设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(1)求椭圆的离心率; (2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;
如图所示,在棱长为4的正方体ABCD—A1B1C1D1中,点E是棱CC1的中点。 (I)求三棱锥D1—ACE的体积;(II)求异面直线D1E与AC所成角的余弦值;(III)求二面角A—D1E—C的正弦值。
在数列中,,,.(1)证明数列是等比数列; (2)设数列的前项和,求的最大值。
已知函数(1)求函数的最小正周期和图像的对称轴方程;(2)若时,的最小值为,求的值。
(本小题满分14分)已知函数(Ⅰ)求函数的极值点;(Ⅱ)若直线过点且与曲线相切,求直线的方程;(Ⅲ)设函数求函数在上的最小值.( )